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Abstract: Natural rubber formulation methodologies implemented within industry primarily impli-
cate a high dependence on the formulator’s experience as it involves an educated guess-and-check
process. The formulator must leverage their experience to ensure that the number of iterations to the
final blend composition is minimized. The study presented in this paper includes the implementation
of blend formulation methodology that targets material properties relevant to the application in
which the product will be used by incorporating predictive models, including linear regression,
response surface method (RSM), artificial neural networks (ANNs), and Gaussian process regression
(GPR). Training of such models requires data, which is equal to financial resources in industry. To
ensure minimum experimental effort, the dataset is kept small, and the model complexity is kept
simple, and as a proof of concept, the predictive models are used to reverse engineer a current
material used in the footwear industry based on target viscoelastic properties (relaxation behavior,
tanδ, and hardness), which all depend on the amount of crosslinker, plasticizer, and the quantity
of voids used to create the lightweight high-performance material. RSM, ANN, and GPR result
in prediction accuracy of 90%, 97%, and 100%, respectively. It is evident that the testing accuracy
increases with algorithm complexity; therefore, these methodologies provide a wide range of tools
capable of predicting compound formulation based on specified target properties, and with a wide
range of complexity.

Keywords: viscoelasticity; machine learning; response surface methodology; natural rubber; reverse
engineering; formulation; optimization; modeling

1. Introduction

The use of naturally derived or sustainable polymers is continuing to gain increasing
attention due to the long-term environmental harm that their synthetic analog imposes.
These synthetic polymers over the last few decades have become the most practical and
economical solution for a huge variety of applications across multiple industries given their
cost savings [1–3]. Such ease of processing, synthetic polymers and having more readily
modifiable properties make them a far more attractive choice for industries looking to
maximize profit and production efficiency, and not taking into priority the environmental
effects of this decision. Consequently, the current understanding of biodegradable and
biopolymers lags behind synthetic polymers. Furthermore, the ease of applicability of
synthetic polymers within the business model comes at the expense of the environment as
synthetic polymers are derived from a non-renewable resource, resulting in an increased
carbon footprint [4–6]. With 27 countries implementing a carbon tax such as México,
Colombia, the EU, and China to name a few, industry will be encouraged to embrace
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polymers that create a negative carbon footprint. An example of such a biopolymer is
natural rubber, which is derived from the Heveas brasilensis tree as latex, polyisoprene which
is commonly made up of about 59% water and 36% rubber solids [7–10].

With the appropriate additives, natural rubber can be manipulated to acquire dis-
tinct properties for specific applications. Previous studies have shown how increasing
sulfur content increases crosslink density and hardness, leading to a less viscoelastic mate-
rial [11–13]. From these studies, Zhao and coworkers were able to demonstrate that the
Shore A and 300% modulus of NR vulcanizates both increased linearly with crosslink den-
sity, but dynamic properties still vary in a non-linear fashion [11]. Plasticizers are another
commonly used additive in industry where it is known to decrease viscosity and improve
processability but also decrease tensile properties, tear strength, resilience, and compression
set [14–16]. Furthermore, sodium bicarbonate is an additive commonly used for the light-
weighting of parts as the elevated temperatures during vulcanization trigger degradation
of the additive, resulting in the release of carbon dioxide. The release of gasses within the
blends creates the foaming effect where a porous inner structure is produced [17,18]. It is
important to recognize that introducing a foamed structure to a testing specimen under
compression behaves very differently from a foamed testing specimen under tension. The
act of compressing testing a foamed polymer structure results in a typical compression
curve seen in Figure 1 below where there are three zones, the initial zone with a higher
tangent modulus, the elastic buckling zone, and the densification zone. The densification
region is where the cellular structure begins to collapse on itself, and the stresses begin to
grow as gas and polymer are compressed.

Figure 1. A typical compression curve for a foamed elastomeric material where (I) is the initial region
with larger tangent modulus, (II) is the buckling region with the reduced tangent modulus, and
(III) is the densification zone.

Furthermore, physical or chemical blowing agents may bring about variation de-
pending on the cell size and the number of cells present within the part [19–21]. Both
morphological properties create variability in material properties, therefore, it is crucial
to understand the level of influence that foaming partakes in mechanical behavior. It is
also important to note that all additives have interacting effects and that varying chemical
grades also bring about variation to your blend material properties. The sensitivity of
material properties due to additives is a complex issue that deems formulating blends a
highly complex task.

Currently, industry leans on the expertise of a formulator and highly depends on
that individual to arrive to the final formulation with the least number of iterations to the
blend by trial and error. This study focuses on using machine learning algorithms and
statistical methods to predict and determine the optimal blends based on target properties
that are indicative of long-term and short-term mechanical behavior. The implementation
of machine learning within polymer processing has reached various areas within additive
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manufacturing in regard to extrusion behavior [22,23], prediction of injection molding
events [24–26], and post-production material behavior [27–30]. The common denominator
for above-mentioned applications is that they require real experimental data to aid in
the creation of representative models. With polymers exhibiting time- and temperature-
dependent behavior, it is crucial to quantify the long-term and short-term behavior of the
polymer of interest to fully understand its material behavior. For that reason, viscoelastic
properties (relaxation behavior and tanδ), hardness, and the quantity of voids in the sample
were selected as the measured properties as they characterize the morphology, short-term
behavior, and long-term behavior of polymers [31–33].

Relaxation measurements allow for long-term behavior analysis as it can also be
interrelated to creep behavior [33–35]. Moreover, dynamic properties are crucial for under-
standing mechanical behavior for high-performance applications undergoing cyclical load-
ing [36–39]. For example, footwear materials undergo cyclical loading between 1 Hz –5 Hz
while materials within the automotive industry may experience cyclical loading within a
frequency range of about 0 and 300 Hz [40]. Furthermore, it should be noted that with the
automotive industry embracing the electrification of automobiles, it should be expected
to encounter higher-frequency vibrations within the automobile, supporting the need to
understand the frequency-dependent behavior of polymers implemented in automotive
design [40]. Additionally, with foaming technologies entering high-performance applica-
tions due to their role in light-weighting, it is no surprise that the addition of air bubbles
within a polymer matrix will alter material performance [18,41,42].

The above-mentioned material characteristics deem formulating a highly complex
process as one additive may increase one material property but non-linearly decrease
another. It is a process that requires the formulator to balance the interacting effects
of all additives, while ensuring that the cost of the overall blend is minimized without
sacrificing quality. This study will focus on providing industry with three data-driven
formulation methodologies, varying in complexity (Response Surface Method, Artificial
Neural Networks, and Gaussian Process Regression) to explain how certain algorithms can
offer additional information to the process besides treating the algorithm like a black box.
The final goal of this study is to use the algorithms as a method for reverse engineering
current materials based on their viscoelastic properties (relaxation, dynamic, and hardness).
The reverse engineering aspect of this study is crucial for formulators as they can feed the
algorithm a starting point to their design of experiments.

2. Materials and Methods
2.1. Materials and Blending

SOAN Laboratories provided the Polymer Engineering Center with Betapreno, one
of their ammonia-free natural rubber (NR) materials produced in Victoria, Colombia.
Table 1 below depicts the additives used within this study to understand the influence of
commonly used additives on the mechanical behavior of natural rubber blends, primarily
its viscoelastic properties. Blends were prepared in a C.W. Brabender 3-Piece bowl mixer
using Banbury blades with a chamber volume of 75 cm3. Table 2 below shows each blend
prepared within this study, where the last two blends were outputted by the predictive
algorithms as target blends, used to improve the prediction accuracy of the machine
learning algorithm. All blends were mixed at 21 ◦C and 50 RPMs until a homogeneous
mixture resulted in the plateau of the torque response logged by the Intelli Plasti-Corder
Torque Rheometer mixer attachment. Additives were tested at varying load ranges to
capture the effect of a low load amount to a large load amount. This was done to ensure the
algorithm captures the limiting effect of an additive as properties do not always trend in the
same manner as you increase the amount of additive [43–46]. Jacob and coworkers showed
that increasing reinforcement increased the tensile strength of the natural rubber blend only
if the loading was below 30 pph (parts per hundred of rubber) [47]. After exceeding 30 pph
of fiber loading, the tensile strength would begin to decrease with fiber loading. Capturing
this phenomenon is crucial as the algorithm needs to understand when loading becomes
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detrimental to certain properties. It is also important to note that only a small number of
blends were created to prove that a small DOE (design of experiments), given the right
data, will be able to aid in the creation of an accurate predictive algorithm.

Table 1. Below depicts the materials used in this study.

Material Provider Purpose

Raw Natural Rubber SOAN Laboratories Raw Material
Sulfur Fisher Scientific Cross-linking Agent

Sodium Bicarbonate Sigma-Aldrich Foaming Agent
Stearic Acid Fisher Scientific Activator
Paraffin Oil Fisher Scientific Plasticizer

TMTD Fisher Scientific Accelerator
Zinc Oxide Fisher Scientific Accelerator

Table 2. Below depicts each blend formulation.

Blend No. Sulfur (pph) Paraffin Oil (pph) Sodium Bicarbonate (pph)

1 2.5 80 8
2 2.5 50 8
3 1.5 40 8
4 1.5 80 8
5 1.5 20 8
6 0.5 20 8
7 0.5 0 8
8 2.5 0 8
9 4 0 8

10 * 0.6 39 8
11 * 0.3 59 8

* These are blends outputted by the ANN algorithm to improve accuracy.

2.2. Material Characterization
2.2.1. Rheological Characterization

A TA Instruments AR-2000EX parallel plate rheometer was employed to quantify the
vulcanization reaction of each natural rubber blend. This instrument has a displacement
resolution of ±40 nrad and a torque resolution ±1 nNm. By using the ASTM D2084
standard, the reaction was characterized to determine the optimal vulcanization time, t90,
at 150 ◦C. Furthermore, to prevent slippage-induced measurement error, parallel plate
rheometry was conducted using serrated parallel plates. After rheological testing, the
samples were placed in cylindrical molds and vulcanized in the Carver 3889 compression
molding machine by exerting 1000 lbs of force at 150 ◦C at the specified t90.

2.2.2. Lissajous Curve Characterization

The NETZSCH Eplexor® 500 N Dynamic Mechanical Analyzer (DMA) was utilized
for the characterization of Lissajous curves and tan δ for each specific sample. NETZSCH’s
DMA is capable of both transient and dynamic testing within a frequency range of 0.01 Hz
and 100 Hz. For this dynamic study, a 10% static compressive strain was imposed on a
cylindrical sample with 10 mm diameter and 10 mm height, and a ±5% dynamic strain
was applied at 1 Hz. The large levels of strains classify these testing conditions as a large
amplitude oscillatory test (LAOS) which creates a valid representation of what stresses
and strains are experienced during walking. The shape of the Lissajous curve gives us
an insight into the level of non-linearity present when loaded cyclically, and also gives us
the tanδ (Figure 2), a measurement represented by the lag between the stress and strain
response during testing, correspondingly the ratio between the Loss Modulus and Storage
Modulus (Equation (1)).

tan δ =
E′′

E′
=

Loss Modulus
Storage Modulus

(1)
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Figure 2. (a) Lissajous curve of raw natural rubber, a nearly-linearly viscoelastic material, (b) Lissajous
curve of standard athletic footwear material, a non-linearly viscoelastic material.

2.2.3. Relaxation Curve Characterization

Similarly, to dynamic testing, relaxation behavior was characterized with the NET-
ZSCH Eplexor® 500 N DMA by imposing a 30% compressive static strain for 10 min and
logging the stress response from the material with respect to time. Strain of 30% was
selected as the testing condition since 10% resulted in the same normalized curve, where a
large signal-to-noise ratio is present, as seen in Figure 3. As the material is quickly loaded
in compression to the predefined strain, the stress reaches the maximum point and begins
to decay with time.

Figure 3. A comparison between a 10% and 30% strain test showcasing the low signal-to-noise ratio
for the lower strain-level test.

The relaxation time is commonly defined as the time necessary for the material to
reach 1% of the maximum stress reached when the static strain was applied at the start
of [31,48,49]. Furthermore, given that full relaxation of a cross-linked polymer is not
frequently attainable at time scales below 10 h, as seen in Figure 4 below, characterization
of the relaxation curve was done by tabulating the maximum stress during relaxation
testing and by fitting the decay of the curve with a power function. Most polymers during
relaxation can be modeled with a power function (Equation (2)) where nrelax, is used to
quantify the rate at which stress decays [33]. By analyzing the magnitude of nrelax, it can
be deduced that if a |nrelax| is large, then the decay occurs more rapidly compared to a
material with a smaller |nrelax|.

σrelax,normalized = A · time−nrelax (2)
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Figure 4. This shows the raw relaxation curve which can be fit to a power function to quantify the
long-term behavior under relaxation.

2.2.4. Sample Morphology Characterization

Before mechanical testing, the ZEISS Metrotom 800 µCT (Carl Zeiss AG, Oberkochen,
Germany) was used to scan (1 h) each cylindrical sample and to create a 3-dimensional
image of the cylindrical specimen by using the scanning parameters mentioned in Table 3.

Table 3. µCT scanning parameters.

Variable Symbol

Voltage [kV] 75
Current [µA] 100

Integration Time [ms] 1000
Gain [-] 8

Number of Projections [-] 1000
Resolutionm] 4

Each scanned image represents a cross-section of the sample with pixel intensity values
ranging from 0 to 255. A pixel intensity value of 0 corresponds to the color black while
a pixel intensity value of 255 corresponds to the color white. A material with a higher
density will have a much higher pixel intensity value compared to a void, which will
output a lower pixel intensity value. For that reason, a MATLAB program, as schematically
shown below in Figure 5, was developed to threshold each image and to characterize the
quantity of voids within each cross-section, allowing for a through-thickness analysis of
each cylindrical sample.

Figure 5. Depicts the workflow for the MATLAB program for quantifying the quantity of voids
present within the sample.
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2.2.5. Durometer Characterization

A durometer (Shore A) was used to characterize the hardness of each respective
blend. It is important to take into consideration that the hardness measurement depends
greatly upon the indenter geometry and the amount of force applied by the operator. In
accordance with ISO Standard D2240-15, this Type A indenter shape includes a flat cone
point (0.79 mm), and a 35◦ included angle with a range of 0~100 HA.

2.3. Computational Methods for Predictive Models
2.3.1. Linear Regression Implementation

Multivariate linear regression is one of the simplest models to construct a mathematical
expression of the material property as a function of blend content. Each of the target
properties—durometer reading, σrelax, nrelax, and tan δ—is formulated by Equation (3):

Y = a0 + a1A + a2B + a3C (3)

In the model above, A corresponds to sulfur content, B to paraffin oil content, and
C to the void content within the sample; the coefficients (or weights and biases) ai’s are
determined by ordinary least squares [50]. The model was implemented using Scikit-
learn [51] (version 0.24.2) with Python.

2.3.2. Response Surface Method Implementation

Instead of linear regression, the response surface method (RSM) uncovers the inter-
connectivity between various controllable factors and several response variables using
nonlinear modeling. It should be acknowledged that RSM serves as an approximation
method that provides a relatively easy method for modeling, estimating, and optimizing
based on target parameters [52–54]. By use of mathematical and statistical techniques,
an empirical model is created from experimental data and is used to evaluate the fit
to a statistical model (linear, quadratic, cubic or two-factor Interaction), as described in
Equation (4) below.

Y = a0 + a1A + a2B + a3C︸ ︷︷ ︸
Linear

+ a4A2 + a5B2 + a6C2︸ ︷︷ ︸
Quadratic

+ a7AB + a8AC + a9BC︸ ︷︷ ︸
Two-Factor

(4)

Same as above, the independent variables A, B, and C represent sulfur content, paraffin
oil content, and void content, respectively. The coefficients (a0 − a6) determined by the
model within the linear and quadratic sections dictate the influence each respective variable
has on the output, Y, while the Two-Factor coefficients (a7 − a9) of the quadratic model
above quantify the level of influence that interactions between two variables have on the
output [52–55]. As mentioned above, formulating is a balance between various additives
and RSM allows for the user to determine, to some degree, the interaction effects between
two controllable variables.

Once the model is created, RSM allows for the optimization of a blend based on target
responses, maximizing a specific response, or minimizing a specific response. The options
available via RSM are of value as some additives may result in a dramatic increase in
raw material expenditure, therefore, one can have a combination of maximizing certain
controllable factors and minimizing others to ensure cost rises are mitigated. Additionally,
each target response may be given an importance value ranging from 0.1 to 10 if the user is
more interested in some responses compared to others. If all target responses are of equal
importance, then the default value should be 1, and if one target response is crucial for the
user, then the importance value can be increased up to a value of 10. Furthermore, weights
may be assigned to each target response with values ranging from 0.1 to 10. The weights
influence the desirability function shape between the lower/upper bounds and the target.
Figure 6 below shows how different weights may influence the desirability function shape
where it can be seen that a larger weight creates a shaper, and quicker convergence to the
target response.
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Figure 6. Desirability functions for different goals and how weights influence their respective shapes.
(a) Minimize the response, (b) Achieve target value, and (c) Maximize the response.

Although the quadratic function is mathematical, the statistical analysis of this regres-
sion model is key for interpreting the model. Minitab® 20 was used for the RSM study
whereas a 95% confidence level was selected as the threshold for statistical significance. The
Pareto chart of the Standardized Effects lists the standardized coefficients to understand
which terms have the highest influence on each given response. By observing the magni-
tude of the standardized effect, the user can understand which controllable factors are the
most influential and if a combination of controllable factors creates significant change to
the output response. The dashed line within the Pareto chart indicates a significance level
of α = 0.05, therefore, anything to the right of the line suggests a term that is statistically
significant to the response [52–54,56].

Additionally, the Coded Coefficients, such as the coefficients and p-value for each
respective controllable factor allow the user to determine if a specific term is significant. If
p-value ≤ α, the association is statistically significant, and if p-value > α, the association
is not statistically significant. Finally, the Model Summary is described by the standard
deviation of the distance between fit values and input data values (S), the percentage of
variation within the model response (R2), the adjusted R2 which is the variation in the
response adjusted for the number of predictors in the model relative to the number of
observations (R2

adjusted), and the R2 of the predictions which indicates how well the model

predicts the removed observations (R2
predictions). It is important to note that if R2

predictions is

substantially less than R2 then this may indicate that the model tends to overfit.

2.3.3. Artificial Neural Network Algorithm Development

Artificial neural network (ANN), which has added nonlinearity compared to RSM,
is a powerful modeling method that can approximate highly nonlinear functions [50]; it
can be used to explore complex relationships between experimental design parameters
and material properties. The basic architecture of a fully connected ANN can be seen in
Figure 7, and consists of an input layer, hidden layer(s), and an output layer. The input
layer takes the design parameters x = [A B C]T, including the sulfur, paraffin oil, and void
content, which is then mapped to a high-dimensional space in each hidden layer using
linear transformation followed by nonlinear activation represented as yh = σ

(
WTx + b

)
.

At the end of the architecture, an output layer is incorporated for predictive purposes by
summarizing the mapped features from the hidden layers to the desired output y through a
linear transformation. During model training, the model parameters (weights W and biases
b) of the network are updated iteratively to minimize the difference between the predicted
and experimental values (loss function). Backpropagation [50] serves as the automatic
differentiation algorithm to calculate the gradients of the loss function with respect to the
model parameters, and the gradients are then used to update the model parameters in the
loss-reducing direction.
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Figure 7. ANN basic architecture.

In this study, an ANN architecture was constructed using Tensorflow [57] (version
2.0.0) and tuned for each of the four material properties, including durometer reading, σrelax,
nrelax, and tan δ. To save experimental costs, the dataset for training and validation was
kept relatively small, which contains 326 data instances. As a result, the hyperparameters
of the ANN models were tuned with several considerations that avoid overtraining, such
as the incorporation of dropout layers and early stopping as well as the leverage between
the number of model parameters and cross-validation accuracy. To find the optimal set of
hyperparameters, a grid search was performed. The grid search considers all the possible
combinations of the discretized hyperparameters in the pre-constructed search space—
including learning rate (0.001, 0.003, 0.01), number of hidden layers (1, 2, 3), and number
of neurons (16, 32, 64, 128, 256)—and evaluates the model performance with each NN
architecture. The model parameters were optimized using the mean absolute error and the
Adam optimizer [58], a commonly used optimizer in industry.

Besides the predictive power, the relationship between the blend characteristics and
the material performance may be inferred from a trained ANN. This can be achieved
through a gradient-based sensitivity analysis that studies the influence of individual blend
content on each of the material properties. In the sensitivity analysis, the gradients of the
output (each material property) with respect to the input (blend content) are computed and
summarized for each input variable. The gradient values can indicate how blend content
contributes to certain material performance, which may lead to human-informed design
logistics for new materials.

2.3.4. Gaussian Process Regression Algorithm Development

Gaussian process regression (GPR) [59] is another class of supervised learning al-
gorithms. Unlike ANNs, GPR makes probabilistic predictions in the form of mean and
variance, and therefore uncertainties of the predictions can be calculated. With such infor-
mation, one can potentially design additional experiments that target the region with high
uncertainty. Another advantage of GPR lies in its “non-parametric” nature, and minimal
hyperparameters need to be learned. Compared with ANNs whose number of parameters
can easily add up to thousands and millions when increasing layers, GPRs usually carry
fewer hyperparameters to tune. In general, GPR loses efficiency for high-dimensional data
but works well with small datasets. Mathematically, GPR utilizes a Gaussian process prior
that is specified by the means and covariance matrices of the training and validation/testing
data. The covariance matrices (hyperparameters) are optimized during the training process
and serve as a way to approximate the similarity between a test input and the training
inputs, which eventually leads to the prediction of the test output based on the training
outputs through matrix operation [59].

As illustrated in a one-dimensional example in Figure 8 below, GPR learns from the
given data points (training data) and predicts the “y” values with a mean and variance.
The region with training data shows a narrower variance than the region without training
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data. Based on the mean and variance, a sample curve (dashed line) can be drawn from the
predicted distribution.

Figure 8. An illustration of GPR and how more data increases the predictive capabilities.

In this study, the GPR model was implemented using Scikit-learn [51] (version 0.24.2);
a basic radial basis function (RBF) kernel was used, and the hyperparameters (length scale
parameters) were optimized during data fitting. Again, 5-fold cross-validation was used to
evaluate the model performance.

3. Results and Discussion
3.1. Material Characterization
3.1.1. Influence of Voids on Viscoelastic and Static Properties

The degradation reaction of sodium bicarbonate within the blend has the ability of
creating a foamed part with varying levels of void amount depending on the additive load
and charge within the compression molding mold [54]. The micrographs seen in Figure 9
below show the three examples of void amounts captured by the ZEISS µCT scanner where
the amount of sodium bicarbonate was kept constant and charge weight within the mold
was altered.

Figure 9. (a) µCT scan of a sample with 0% voids. (b) µCT scan of sample with 11.8% voids. (c) µCT
scan of sample with 19% voids. (d) µCT scan of sample with 32.2% voids.

It is evident that increasing void amount results in a decrease in solid material carrying
load during testing [18,41,42]. For that reason, it is expected to see that a foamed structure
consisting of the same formulation will result in a less rigid material, compared to one of
lesser voids. Figure 10 below shows the overlay of relaxation tests for the same formulation
but at varying void contents and it can be observed that increasing voids results in a vertical
shift of the overall curve. Furthermore, in Figure 11 below, a clear linear relationship
between the rigidity of the material and void amount can be seen if the maximum stress
reached during testing is grouped with its respective void amount.
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Figure 10. An overlay of relaxation tests of blend 1 at varying levels of void content mentioned in the
text to the right of each curve.

Figure 11. Depiction of the linear relationship between max stress experienced in relaxation testing
and void content for blend 1.

Voids have a present influence on how rigid the material is during relaxation, and it
can also be observed that the rate at which stress decays is also influenced by the quantity
of voids present in the sample. Evaluating the nrelax of individual curves allows for the
analysis of how voids influence the rate of stress decay, whereas it can be seen in Figure 12
how voids and nrelax have a linear decreasing relationship. This relationship states that as
the amount of voids increases, the rate at which stress decays will be larger, therefore, if a
material with minimal compression is sought after then the amount of voids would need
to be minimized.

Figure 12. The relationship between voids and the rate at which stress decays for blend 9 (left) and
10 (right), characterized by nrelax.
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To better understand at a quantitative level the amount of influence that parameters
impose on a certain material property, the Pearson correlation coefficient is utilized to
determine the level of significance between two specified variables. The correlation matrix
is constructed by using the Equation (5) below whereas x may represent sulfur content and
y could be voids.

r =
Σ(xi − x)(yi − y)√

Σ(xi − x)2Σ(yi − y)2
(5)

r = correlation coefficient

xi = values of the x− variable in a sample

x = mean of the values of the x− variable

yi = values of the y− variable in a sample

y = mean of the values of the y− variable

Figure 13 below shows the normalized heat map where a Pearson correlation coeffi-
cient closer to −1 translates to a highly significant decreasing effect on the specific property,
a value of +1 translates to a highly significant increasing effect on the specific property, and
a value near zero is interpreted as an insignificant parameter to the property of interest.
There are three areas present within this heat map, the Input Blend Formulation coefficients
which explain how the blends are not correlated with each other, the Output Material
Property coefficients which dictate how each output property is interrelated with one
another, and the Input Output Correlation coefficients that give insight into how additives
influence the output viscoelastic properties. To mention a few, it can be seen that nrelax is
negatively correlated with tan δ and that σrelax is positively correlated with hardness of the
material, captured by the durometer. It can be seen within the heat map that voids have a
positive Pearson correlation coefficient value with tan δ, therefore it is expected to see the
rise of tan δ with increased amounts of voids.

Figure 13. The Pearson correlation coefficients for each parameter.

The positive correlation of void content on tan δ specified by the Pearson correlation
coefficient is confirmed in Figure 14 below where blends 8 and 9 clearly show an increasing
trend for tan δ as void content increases. The above-mentioned trend is present in all blends,
allowing for the prediction of tan δ behavior for samples with zero percent void content to
40% void content by extrapolating data via linear regression techniques.
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Figure 14. The increasing relationship of void content on tan δ.

As seen in Figure 11 above, the quantity of voids in the sample influences the stresses
reached during relaxation testing, an indication of rigidity. This influence on rigidity is also
captured in hardness measurements, a static method in which it can be seen that increasing
void content results in a decrease in hardness. Figure 15 below shows how hardness of
blend 5 decreases in a linear fashion as void content increases.

Figure 15. The influence of void content on hardness.

3.1.2. Influence of Sulfur on Viscoelastic and Static Properties

An increased amount of sulfur within formulations results in an increased number
of cross-links, and the rise in crosslink density results in a decreased ability for molecular
chains to move past one another [31,60]. If mobility is limited, then intermolecular forces
will be present, restricting full relaxation, and the lag between the strain and stress response
will be minimized [31,32]. All three relaxation curves in Figure 16 below represent blends
that only differ in the quantity of sulfur within the formulation. With no plasticizer present
within the formulation, it can be appreciated how increasing the sulfur amount in fact
increases rigidity, as seen in (a) where the blend with 4.0 pph of sulfur reaches a maximum
stress 1.6 times larger than the blend with 0.5 pph of sulfur. Moreover, observing the
normalized relaxation curves in (b) proves how decreasing molecular mobility creates a
material that experiences less relaxation decay behavior. A decrease in relaxation decay
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behavior, a consequence of increased crosslink density, indicates that such material will take
much longer to reach 1% of the maximum stress, to a material with lesser sulfur quantity.

Figure 16. (a) Depicts relaxation curves for blends 7, 8 and 9 while (b) represents the normalized curves.

The blends mentioned in Figure 16 above did not contain plasticizer within the formu-
lation and comparing blends with an equal amount of plasticizer with varying amounts
of sulfur has the ability of creating a more complex material. It can be seen in Figure 17
below that increasing the sulfur load, for a blend with 80 pph of plasticizer, results in larger
maximum stress reached during testing, but opposite to what was observed in Figure 16,
the normalized relaxation curves do not follow the same trend. It is visible that increasing
the sulfur amount from 1.5 pph to 2.5 pph, all with 80 pph of plasticizer has minimal
influence on the rate at which relaxation occurs and a substantial effect on the rigidity of
the material.

Figure 17. (a) Depicts relaxation curves for blends 1 and 4 while (b) represents the normalized curve,
showing a large similarity in regard to the stress decay behavior.

With the Pearson correlation coefficient for sulfur on tanδ being −0.8, it is expected to
see a decreasing trend on tanδ with increasing sulfur content. The expected trend can be
appreciated in Figure 18 below where each blend has equal amounts of paraffin oil content
but with varying sulfur content. A positive vertical shift in the curve can be appreciated
as sulfur content decreases since it is known that heavily crosslinked polymers exhibit a
decrease in molecular mobility [31,61].
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Figure 18. The influence of sulfur content and void content on tan δ for blends 7, 8 and 9.

Additionally, it can be seen from Figure 19 below that sulfur content also has an
increasing influence on hardness where both blends show a linear trend with similar
slopes. It is expected that the combination of additives can create a polymeric material
that is extremely difficult to predict its mechanical properties. One additive may be in
charge of influencing the relaxation behavior in one manner, while the second additive
may counteract that influence but improve another material property. For that reason,
formulating is a sensitive balance between many additives, a task that needs to consider
additive-to-additive effects, thus the reason for implementing predictive tools such as
linear regression, the Response Surface Method, Artificial Neural Networks, and Gaussian
Process Regression for viscoelastic property predictions. Although linear regression lacks
the complexity, it is able to serve as a justification for why a specific application requires
a more complex method to increase accuracy. In this study, linear regression served as a
baseline study to prove that the formulation process is a highly non-linear process that
requires a complex system for prediction.

Figure 19. The influence of sulfur content and void content on hardness.

3.1.3. Influence of Paraffin Oil on Viscoelastic and Static Properties

Paraffin Oil is commonly used in the rubber industry to decrease the blend viscosity
and to facilitate processing since the ultra-high molecular weight of natural rubber is
extremely viscous [43,62]. Introducing paraffin oil into the blend evidently reduces the
strength of the material, which can be seen in Figure 20 below where an increase in charge
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of such plasticizer reduces the stresses experienced during relaxation testing at 30% strain.
At the given sulfur amount of 1.5 pph it is visible how the addition of paraffin oil creates a
balancing effect to the stresses reached during testing. Unfortunately, this observation is
not visible when the amount of sulfur is further increased to 2.5 pph of sulfur, the sulfur
amount reaches a point in which it masks the effects of paraffin oil and limits the influence
on rigidity.

Figure 20. The influence of paraffin oil content on relaxation behavior of NR blend with 1.5 pph of sulfur.

As mentioned above, each additive has a limiting effect on the mechanical behavior,
therefore the saturation of an additive within a blend may cause minimal influence on the
system after a certain threshold is reached. This relationship can be seen in Figure 21 below
where the relaxation tests which differ only in paraffin oil content show that a blend with
40 pph of paraffin oil results in a material with similar relaxation behavior to a blend with
80 pph of paraffin oil.

Figure 21. The influence of paraffin oil content on relaxation behavior of NR blend with 2.5 pph
of sulfur.

Similar to Figure 11 above, the max stress reached during relaxation testing can be
graphed with respect to void content and paraffin oil content. Figure 22 below shows the
max stresses experienced during relaxation testing for blends with 2.5 pph of sulfur while
Figure 23 shows it for a blend with 1.5 pph of sulfur. Sulfur and paraffin oil have competing
effects on the rigidity of the material, and it can be noted by tabulating the slopes of stress
decay for each set of data points that slopes differ in trend depending on the amount of
sulfur content.
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Figure 22. The influence of paraffin oil content on σrelax of NR blend with 1.5 pph of sulfur.

Figure 23. The influence of paraffin oil content on σrelax of NR blend with 2.5 pph of sulfur.

Upon evaluation of the tabulated slopes from Figures 22 and 23, it is evident that the
influence of voids in a 2.5 pph blend is more aggressive and becomes more pronounced
as the paraffin oil content increases. For the same given paraffin oil content of 80 pph, a
system with 1.5 pph of sulfur experiences a stress loss of 2.1 kPa for every percent void
present in the sample while a blend with 2.5 pph of sulfur experiences a 4.4 kPa decrease in
max stress during relaxation for every percent void present in the sample. As mentioned,
the formulation process is a sensitive balance between many competing additives and a
formulator may arrive to a similar material with several blends. Figure 24 below shows
how at approximately 16% void content a material with 2.5 pph of sulfur and 1.5 pph of
sulfur, all with 80 pph of paraffin oil content will have a similar rigidity in a relaxation test
at 30% compressive strain.

Figure 24. Plot describing the similarity of unique blends by varying void content.
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The DMA allowed for the characterization of tanδ where it can be seen for blend 3–5,
in Figure 25a below, how paraffin oil has a minimally significant increasing influence on
tanδ until a threshold is reached. Upon reaching a set threshold of paraffin oil content, the
trend is turned into a decreasing relationship. Once the amount of sulfur is increased from
1.5 pph to 2.5 pph, it can be seen in Figure 25b below that the increased sulfur amount
overpowers the influence of paraffin oil, and the influence imparted by the plasticizer has
an increasing effect on tanδ.

Figure 25. The influence of paraffin oil content on tan δ for a blend with 1.5 pph (a) and 2.5 pph of
sulfur (b).

Although the increasing and decreasing trend of paraffin oil on tanδ are visible, it is
important to note that paraffin oil, compared to the other additives has a minimal influence
on tanδ. As seen in Figure 13 above, the heat map clearly shows that paraffin oil content is
rated with a value of −0.093 regarding the level of significance, compared to sulfur which
is rated at a value of −0.8. As mentioned before, as the values reach −1 or 1, the level
of significance is greater than a value near zero. Moreover, Paraffin Oil had a decreasing
effect on the hardness of the material as seen in Figure 26 below where each shade of gray
specifies a different amount of paraffin oil within the blend.

Figure 26. The influence of paraffin oil content on hardness.

3.2. Predictive Methodologies for Reverse Engineering
3.2.1. Response Surface Method Prediction Results

Each output response has its respective model equation, as seen in Table 4 below, where
each coefficient describes the level of influence that each linear, quadratic, and interaction
parameter has on the performance of the system. With hardness and σrelax during relaxation
being closely interrelated to the rigidity of the material, a transient property, the models
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for both responses reach high prediction accuracies compared to the other two viscoelastic
properties where time-dependent behavior is characterized. The RSM model created from
only 11 blends results in an average Prediction R2 of 0.89, and by comparing the proximity
of each R2 within each respective model, it is evident that overfitting is not occurring in this
model given that there is no large variation between all three R2 values.

Table 4. Below depicts each blend formulation.

Response Variable Model Equation R2 Adjusted R2 Predicted R2

Durometer [Shore A] 25.76 + 7.14A− 0.44B− 0.26C− 1.15A2 + 0.002B2 +
0.0001C2 + 0.03AB + 0.01AC− 0.0005BC

0.9689 0.9680 0.9667

σrelax [kPa] 440.12 + 268.26A− 10.80B− 9.90C− 26.37A2 +
0.07B2 + 0.01C2 − 1.39AB− 2.94AC + 0.14BC

0.9906 0.9903 0.9900

nrelax [-]
−0.024 + 0.01674A− 0.00018B− 0.00049C−

0.003A2 + 0.000001B2 + 0.000008C2 + 0.0000034AB +
0.000025AC + 0.000000BC

0.7533 0.7463 0.7367

tan δ [-]
0.119− 0.0819A + 0.0004B + 0.00079C + 0.014A2 −

0.000002B2 − 0.000013C2 − 0.000083AB−
0.000003AC− 0.000001BC

0.8748 0.8712 0.8660

Standardizing the coefficients allows for the configuration of the Pareto Chart of the
Standardized Effects where Figures 27–30 show the Pareto Chart for each respective output
response within this study. A, B, and C all represent a controllable variable (factors), as seen
in the legend on the right of each Pareto Chart. A linear term within the chart only includes
one factor, such as A, representing the linear term of Sulfur. A quadratic term includes two
factors, such as AA, and an interaction term within the chart is shown with two different
factors, such as AB, which describe the interaction between Sulfur and Paraffin Oil.

Figure 27. The Pareto Chart of Standardized Effects for durometer reading.

Figure 28. The Pareto Chart of Standardized Effects for σrelax.
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Figure 29. The Pareto Chart of Standardized Effects for nrelax.

Figure 30. The Pareto Chart of Standardized Effects for tan δ.

The Pareto chart for σrelax and hardness both show that Paraffin Oil has the largest
influence on the output response and that the response should closely follow a linear trend
since the largest terms only have one factor. This linear relationship can be confirmed
by looking at Figure 22 above where the linear trendline is present with an R2 of 0.99.
Observing the Pareto charts for nrelax and tan δ both show how complex the model is as the
top two most influential terms are quadratic terms. RSM suggests that if the coefficient of
the squared term is significant, then one can conclude that the relationship between both
controllable variables closely follows a curved response. This statement is supported in
Figure 31 where the relationship of sulfur on nrelax does not follow a linear trend, but more
of an asymptotic curve.

Figure 31. The curved response of sulfur content on nrelax, further confirming the results in the
Pareto chart.
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3.2.2. Artificial Neural Network Prediction Results

The final ANN architectures selected are summarized in Table 5, and the parity plots
of the experimental and predicted values from 5-fold cross-validation are illustrated in
Figure 32. For each of the four material properties, the R2 value increased compared
to the linear regression baseline. It is worth noting that a simple NN architecture has
the ability to capture material-property correlation pertinent to the rubber blend content,
especially for nrelax and tan δ whose underlying functions are more nonlinear, as suggested
by the significant improvements of the two. When compared with RSM, ANNs also
showed improvements in prediction accuracies for nrelax and tan δ. This again confirms
that nrelax and tan δ would benefit from a more nonlinear modeling approach. Although
the selected ANN architecture for σrelax performed slightly worse than RSM, some of the
more complex architectures (with over 1000 parameters) tested could reach a comparable
R2 value. However, to avoid overtraining, the model complexity and accuracies were
leveraged during the model selection process.

Table 5. Below shows the predictive capabilities of the ANN.

Target Material
Property

Number of
Hidden Layers

Number of
Neurons in the
Hidden Layer

Learning Rate

Number of
Learnable

Parameters in
the Model

5-Fold CV
R2 of ANN

5-Fold CV
R2 of Linear

Regression Baseline

Durometer 1 64 0.01 321 0.99 0.91
σrelax 2 16.16 0.01 353 0.96 0.90
nrelax 2 16.16 0.01 353 0.94 0.48
tanδ 1 32 0.003 161 0.98 0.67

Figure 32. The parity plots for all four ANN models.

After the models were developed, the sensitivity analysis was performed on both the
linear regression baseline and the ANNs. For linear regressions, the gradients were simply
the weights, and for ANNs, the gradients were obtained from backpropagation. Figure 33
shows the averaged gradients from the individual folds of cross-validation. In general,
the gradients from both the LR and ANN models have the same trend except for nrelax,
where the paraffin oil content has a positive gradient in LR but negative gradient in ANN.
The RSM analysis also suggests a negative gradient, which corroborates with relaxation
theory as the plasticizer increases the free volume between the rubber molecules, further
facilitating relaxation as you increase plasticizer content.
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Figure 33. The results from the sensitivity analysis for both the linear regression baseline and
the ANNs.

3.2.3. Gaussian Process Regression Prediction Results

The parity plots for GPR are illustrated in Figure 34, with the shaded region suggesting
the bounds for 95% confidence intervals (obtained by 1.96 standard deviations given by GPR
prediction). For each of the four material properties, the R2 value increased significantly
compared to all the above methods, and the uncertainties are small in regions where
the experimental data are abundant. In spite of the ability to make predictions with
uncertainty, it is difficult to obtain physical insights from GPR due to its nonparametric
nature. However, given the high cross-validation accuracy, GPR could potentially be used
to generate synthetic data for the Bayesian optimization algorithm that aims to find the
optimal blend content.

Figure 34. The parity plots describing Predicted vs. Experimental for GPR.
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3.3. Material Design Optimization

With industries, such as the footwear industry moving towards sustainable mate-
rial alternatives for midsoles, target properties could be selected based on an existing
footwear material via characterization techniques. The respective methods would be im-
plemented to predict the blends that would theoretically exhibit the target properties. In
this section, we show that the previously developed predictive models can be used to aid
reverse engineering.

RSM provides an empirical model that allows users to utilize it as a method for reverse
engineering based on target parameters. Similarly, the trained ANN and GPR could also
be used for reverse engineering. Based on the target parameters, a score function was
constructed based on the weighted Euclidean distance between the predicted and the target
values. The optimal set of parameters is the ones that minimize the score function. The
input rubber blend compositions are constrained by experimental considerations, such
as upper and lower bounds that are physically meaningful and precision limits of the
characterization equipment. Table 6 below shows the blends outputted by each predictive
method which exhibit the target properties mentioned within it.

Table 6. Below summarizes the blends that were classified as the optimal blend based on target properties.

Modeling Method Prediction Results

Target Properties
σrelax: 90

nrelax: −0.0527
tan δ: 0.066

RSM
Sulfur: 0.65

Paraffin: 69.5
Void: 30.0

RSM-predicted Properties

Durometer: 0.45
σrelax: 90.26

nrelax: −0.02875
tan δ: 0.0982

ANN
Sulfur: 0.55
Paraffin: 54

Void: 17

ANN-predicted Properties

Durometer: 5.612
σrelax: 82.45

nrelax: −0.0399
tan δ: 0.113

GPR
Sulfur: 0.55
Paraffin: 57

Void: 10

GPR-predicted Properties

Durometer: 6.187
σrelax: 111.78

nrelax: −0.0347
tan δ: 0.114

For ANN and GPR, since the input design space is relatively small, we generated all
the possible input rubber blend compositions in the input design space within the feasible
region. This is possible due to the consideration of experimental precision that makes
the distribution of the design space rather discrete. Overall, around 6600 possible blend
compositions and their corresponding predicted properties were obtained. The composition
with the minimum score (loss) was identified as the optimal blend composition.

The above reverse engineering method is relatively straightforward and fast to popu-
late given this small design space. In fact, all the predicted values were generated within
seconds. Nevertheless, when we have a large design space or when the input compositions
are no longer discrete, this method may fail. Alternatively, we used Bayesian optimization
(BO) [63] to find the optimal blend compositions. BO utilizes Gaussian processes (as in
GPR) to solve the black-box optimization problem—in this case, a minimization problem
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with an objective function to minimize the score while satisfying the design parameter
constraints [64]. The algorithm first establishes a surrogate model that computes a posterior
distribution (mean and variance) of the objective function using a set of sample points.
The surrogate model is then used to construct an acquisition function that estimates the
distribution of the objective function for any test data. A recommended blend composition
can be obtained by minimizing the acquisition function (where we used the score function);
this blend composition is used to obtain a new observation data point (usually from an
experiment or from some existing predictive model) to be incorporated for updating the
surrogate model. After running these steps iteratively, the algorithm will converge to an
optimal blend composition.

In this study, instead of collecting data from experiments for each iteration, we used
the previously trained GPR model to generate the new “observations” given its high CV
accuracy. The BO was implemented using Scikit-learn [51] (version 0.24.2) and Scipy [65]
(version 1.7.0). The resulting blend composition from BO is similar to the findings from
the previous approach. Overall, even though BO bypasses the construction of specific
predictive models for material properties, it can guide the design of new experiments and
thus reduce the overall experimental costs.

4. Conclusions

The design process may include various iterative cycles, a time-consuming task for one
with limited experience within the field, and with industry aiming to maximize productivity,
each iterative cycle in the design process equates to a loss of resources. The presented
methods in this research study provide users with low-fidelity and high-fidelity design
optimization methods applicable for reverse engineering applications. These methods
provide users with an automated formulation process capable of informing the user of
key material properties that each formulation will have. Table 7 below briefly highlights
each method where accuracy grows as you move upwards in algorithm development
complexity.

Table 7. Summary of algorithm accuracies presented in this paper ranging in complexity.

Target Material Property LR—Baseline R2 RSM R2 Optimized ANN R2 Optimized GPR R2

Durometer 0.91 0.97 0.99 1.00
σrelax 0.90 0.99 0.96 1.00
nrelax 0.48 0.75 0.94 1.00
tanδ 0.67 0.87 0.98 1.00

By selecting the appropriate viscoelastic properties and predictive methodologies, the
small number of experimental blends captured the highly non-linear behavior of natural
rubber blends, which concluded with GPR showcasing the largest 5-fold cross-validation
predictive accuracy of 100%. GPR was able to accurately predict the short-term behavior,
long-term viscoelastic behavior, transient and dynamic properties. As depicted in Table 6
above, by specifying the desired material properties of the product, each algorithm was
able to output an optimal blend capable of behaving similarly to what was desired. The
algorithm provides the user with a starting point based on a highly accurate algorithm,
saving the user time, and ultimately saving valuable resources.
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